Deep Learning and
its applications to robotics

ay

Pinxin Long

doraleet

Outline

e An Introduction to Deep Learning

e Deep Learning Libraries (Keras)

e Its Applications to Robotics

Machine Learning

Class label
(Classification)

X — |)| —)

Vector
(Estimation)

Object recognition

> {dog, cat, horse, flower, ...}

deep learning of data representations

M (x|©)

N

4
hierarchical

input output

joint learning
of representations with
increased levels of
abstraction
+ classification or

regression

Traditional Design Cycle
) ' \/

Domain knowledge Interest of people working
on computer vision, speech
recognition, medical image
processing,...

Choose and

€ Interest of people working
Preprocessing and feature design model on machine learning

design may lose useful wlr
Interest of people working
on machine learning and
computer vision, speech

information and not be
optimized, since they are not
parts of an end-to-end
Preprocessing could be the e g
recognition, medical image
result of another pattern d 3
recognition system en sl this slide from Xiaogang Wang

learning system

Design Cycle
with Deep Learning

Learning plays a bigger role in the
design circle

Feature learning becomes part of the
end-to-end learning system

Preprocessing becomes optional
means that several pattern
recognition steps can be merged into
one end-to-end learning system

Feature learning makes the key
difference

We underestimated the importance
of data collection and evaluation

end

this slide from Xiaogang Wang

End-to-end robotic control

standard state : . low-level

. . e modeling & motion motor
robotic observations = | estimation Gl LA : . controller |

' . prediction planning torques
control (e.g. vision) (e.g. PD)
deep @ @
: . : g motor
sensorimotor observations : g
: : torques

)

learning

this slide from Sergey Levine

What is Deep Learning

In general, Deep Learning is Machine Learning algorithms that process data with hierarchical layers,
for a non-linear mapping of data.

Until now, most of DL application are using multi-layer neural network. y — f(x)

KJ soag \dense

dense’| |dense

1000

128 Max
Max 128 Max pooling
pooling pooling

2048 2048

Black box model, but works impressively well.

this slide is from Qinrui Yan

Neuron System

Much more sophisticated: Hodgkin-Huxley model

Dendrites Terminal branches of axon
o —7 (receive messages (form junctions with other cells)

=5 from other cells)

Axon
(passes messages away
from the cell body to

Myelin sheath
(covers the axon
Neural impulse (action potential) of some neurons
(electrical signal traveling and helps speed
down the axon) neural impulses)

Cell body
(the cells life-

support center)
this slide is from Qinrui Yan

Artificial Neural Network

Although ANN can be used as a regression or clustering algorithm, it was initially created for classification.

Input layer Hidden layer Output layer

E:Z(hk _yk)z

Outputs

h is the output under current weights.
y is the labelled data of current input.

this slide is from Qinrui Yan

Input layer ~ Hidden layer Output layer

Outputs

y=wx, +w,x, +b

Negative|region

w, =1w,=1b=-2

single layer perceptron is a linear classifier

this slide is from Qinrui Yan

Perceptron with one hidden layer

= W2-1(W1-11x1 T W X, bl-l)
W Wz-z(Wi X) T WX, + bl-Z)

i Wz-s(Wiz X T W 3 X, + bl-S)

this slide is from Qinrui Yan

Perceptron with non-linear jactivation function

.\ U-S
““W\I\\\ 0.6
o () 0.4
H-@ ¢ B
wz.— - ——
b 0
i -8 6 1 2 o0 2 4 6 8
b . . —
o (-) is a non-linear activation
function, sigmoid was
a=Ww.Xx + WX _|_ b the most popular one,
1771 2

y=0o (a) o(y)= 1

l+e™

this slide is from Qinrui Yan

Perceptron with non-linear activation function

al = W1 X WX, +b1-1
a2 =W 5% + Wi X5 + b,

a3 = Wi 3X) T W 53X, + b1-3

y=o(w, o (aD+w, ,o (a2)+w, ;o (a3))

this slide is from Qinrui Yan

Power of 'deep’ structure

One neuron (perceptron): Linear separation
One hidden layer: Realization of convex regions
Two hidden layers: Realization of non-convex regions

this slide is from Qinrui Yan

Problem of 'deep’ structure

In general, the more layers a neural network has, the more
representative ability it has.

e Gradient diffusion: Errors are difficult to back propogate.

e Overfitting: Too many parameters, easy to drop into local
minimal.

this slide is from Qinrui Yan

Convolution neural network (CNN)

e Designed for 2-dimensional object recognition, take the spatial information
into account.

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5
INPUT B@26x28
S2: 1. maps

32x32 L
B@14x14

|
| Full conection | Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

e Basic types of layers:
1. convolution layer: for feature extraction

2. sub-sampling layer: for simplifying feature, prevent overfitting.
3. fully connected layer: for final classification.

this slide is from Qinrui Yan

Classic Networks:

1. AlexNet(2012): A.Krizhevsky & G.Hinton(U Toronto)

2. GoogleNet(2014): C.Szegedy & etc (Google, Umich, UNC)
3.VGG(2014): K.Simonyan & A.Zisserman (Oxford)

4. SPP-Net(2014): He Kaiming & etc(MSRA)

5. Deep residual network(2015): He Kaiming & etc(MSRA)

Top-5 error
35.00%
30.00% 28.20%
25.80%

25.00%

8 layers
20.00%

e i 8 layers
15.00%

awzex 7 layers 19 layers 22 layers 152 layers
10.00% T 8.06%
_______________ ...,,?'30% 6.70%
5.00% l
0.00%
2010 SIFT+SVM 2011 BOW+SVM 2012 AlexNet 2013 Clarifai 2014 SPPNet 2014 VGG 2014 GoogleNet 2015 ResNet

this slide is from Qinrui Yan

Recurrent Neural Networks (RNNs)

LA

b
:
b

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

& o

A— A— A

with hidden layer recurrence:

(input + empty_hidden) -> hidden -> output
(input + prev_hidden) -> hidden -> output
(input + prev_hidden) -> hidden -> output
(input + prev_hidden) -> hidden -> output

... and 4 timesteps with input layer recurrence....

(input + empty_input) -> hidden -> output
(input + prev_input) -> hidden -> output
(input + prev_input) -> hidden -> output
(input + prev_input) -> hidden -> output

https://iamtrask.github.io/2015/11/15/anyone-can-code-Istm/

MakeAGIF.com

https://iamtrask.github.io/2015/11/15/anyone-can-code-Istm/

RNNSs

one to one one to many many to one many to many many to many

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

End-to-end robotic control

standard state : . low-level

. . e modeling & motion motor
robotic observations = | estimation Gl LA : . controller |

' . prediction planning torques
control (e.g. vision) (e.g. PD)
deep @ @
: . : g motor
sensorimotor observations : g
: : torques

)

learning

Drawbacks of deep learning

1. Computation is expensive
2. ltis very difficult and labour intensive to get labelled data.
3. Brute force.

We have to realize, deep neural network is not the final solution of Artificial
Intelligence. Actually for human, most of knowledge comes from unsupervised
learning, so a long way need to go.

How to bring prior knowledge in to the model is still a important issue.

this slide is from Qinrui Yan

Conclusion

1. Deep Learning is a very simple but powerful tool of feature learning,
especially for perception in Robotics.

2. Where is the training data from?
3. How to simplify data processing according to the specify task of robot.

4. Deep Learning is changing lots of things, sometimes even over our
expectations. We should pay attention to its development.

this slide is from Qinrui Yan

Deep Learning Libraries

-P' tensorflow/tensorflow C++ W 28686 911,773

Computation using data flow graphs for scalable machine learning

BVLC/caffe C++ 11,462 196910

Caffe: a fast open framework for deep learning.

W fchollet/keras Python ¥ 7,167 {92,096

Deep Learning library for Python. Convnets, recurrent neural networks, and more. Runs
on Theano or TensorFlow.

9 dmlic/mxnet C++ W 4,510 191,671

Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic,
Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and
more

More info...https://github.com/zerOn/deepframeworks

Keras: An Introduction

What is Keras?

e Neural Network library written in Python
e Designed to be minimalistic & straight forward yet extensive
e Built on top of either Theano or newly TensorFlow

Why use Keras?

e Simple to get started, simple to keep going
e \Written in python and highly modular; easy to expand
e Deep enough to build serious models

General Design

General idea is to based on layers and their
input/output

Prepare your inputs and output tensors
Create first layer to handle input tensor
Create output layer to handle targets

o
o
o
e Build virtually any model you like in between

Layers and Layers

Keras has a number of pre-built layers.

e Regular dense, MLP type

keras.layers.core.Dense(output_dim,
init="glorot _uniform',
activation='linear',
weights=None,
W_regularizer=None, b_regularizer=None, activity_regularizer=None,

W constraint=None, b_constraint=None,
input_dim=None)

e Recurrent layers, LSTM, GRU, etc.

keras.layers.recurrent.GRU(output_dim,
init="glorot_uniform', inner_init='orthogonal',
activation='sigmoid', inner_activation='hard sigmoid’',
return_sequences=False,
go_backwards=False,
stateful=False,
input_dim=None, input_length=None)

e 1D Convolutional layers

keras.layers.convolutional.ConvolutionlD(nb filter, filter_length,
init="uniform',
activation='linear',
weights=None,
border_mode="'valid',
subsample_length=1,
W regularizer=None, b regularizer=None,
W_constraint=None, b_constraint=None,
input_dim=None, input_length=None)

e 2D Convolutional layers

keras.layers.convolutional.Convolution2D(nb_filter, nb _row, nb col,
init="glorot _uniform',
activation='linear',
weights=None,
border_mode='valid’,
subsample=(1, 1),
W regularizer=None, b regularizer=None,
W _constraint=None,
dim ordering="'th')

Other types of layer include:

Dropout

Noise

Pooling

Normalization (BatchNormalization)
Embedding

Flatten & Merge

And many more...

Activations

More or less all your favourite activations are available:

e Sigmoid, tanh, RelLu, softplus, hard sigmoid, linear

e Advanced activations implemented as a layer (after
desired neural layer)

e Advanced activations: LeakyRelLu, PRelLu, ELU,

Parametric, Softplus, Thresholded linear and Thresholded
Relu

Objectives and Optimizers

Objective Functions:

e Errorloss: rmse, mse, mae, mape, msle
e Hinge loss: squared hinge, hinge
e Class loss: binary crossentropy, categorical crossentropy

Optimization:

e Provides SGD, Adagrad, Adadelta, Rmsprop and Adam
e All optimizers can be customized via parameters

Parallel Capabilities

e Training time is drastically reduced thanks to Theano's
GPU support

e Theano compiles into CUDA, NVIDIA's GPU API

e Currently will only work with NVIDIA cards but Theano is
working on OpenCL version

e TensorFlow has similar support

Architecture/Weight Saving and Loading

e Model architectures can be saved and loaded
save as JSON
json_string = model.tn_json()ﬂ
save as YAML
yaml_string = model.to_yaml()

model reconstruction from JSON:
from keras.models import model_from_json
model = model_from_json(json_string)

model reconstruction from YAML
model = model_from_yaml(yaml_string)

e Model parameters (weights) can be saved and loaded

model.save_weights('my model weights.h5')
model.load_weights('my_model _weights.h5')

Callbacks

Allow for function call during training

e (Callbacks can be called at different points of training
(batch or epoch)

e EXxisting callbacks: Early Stopping, weight saving after
epoch, learning rate

e Easy to build and implement, called in training function, fit

()

Model Type: Sequential

e Sequential models are linear
stack of layers
e The model we all know and

love
e Treat each layer as object
that feeds into the next

Input layer

Hidden layer

Qutput layer

Out,,

Functional API

e Optimized over all outputs

e Graph model allows for two
or more independent
networks to diverge or merge

e Allows for multiple separate
Inputs or outputs

e Different merging layers
(sum, concat, elem-wise
mult, ave, dot product, cos
proximity)

main_input (InputLayer)

Y

embedding 1

(Embedding)

A J

aux_input {InputLayer)

Istm_1 (LSTM)

N LN

merge_1 (Merge)

l

dense_1 (Dense)

l

dense_2 (Dense)

) 4

dense_3 (Dense)

Y

main_output (Dense)

aux_output (Dense)

In Summary

Pros:

Easy to implement
Lots of choice
Extendible and
customizable

GPU

High level

Active community
keras.io

cons:

e Lack of generative
models
e High level

Its Applications to Robotics

e Problem
e Data

e Model

Supersizing Self-supervision: Learning to Grasp
from 50K Tries and 700 Robot Hours

(ICRA 2016 Best student Paper Award)

Clutter Removal

e Problem: &

http://www.youtube.com/watch?v=oSqHc0nLkm8

e Data:

- w
Approach Execute random Verify grasp

Query Kinect image Find objects via MOG subtraction random object QTHSPSUCCESS

e Model

Image patch comr‘l conva cnrwB convd cunuﬁ ch fe7 ang1
(227%227) 2560 3840 (1024) @
[55}{55} (27TX2T) {13)(13) (13X13) {13X13}
angs
(2
angl12
&
ang18
(2)

| | Learnt Parameters |

| AlexMet Pretrained Parameters

A Machine Learning Approach to Visual Perception
of Forest Trails for Mobile Robots (RAL 2016)

e Problem

i TR ™ (T e
A T el TR 7 Front Cam
ks A v Era Vi
Bw

Deep Network Outputs
Meural

Network

%\ ’ Turn Go Turm

Left Straight Right

Fig. 1: Our quadrotor acquires the trail images from a forward-
looking camera; a Deep Neural Network classifies the images to
determine which action will keep the robot on the trail.

Problem

° trail heading left

which direction is the trail heading to?

e Data

trail

cam

Top view

B

r_cam

pSie/od

|_cam

e Model

LO - Input layer: 3 maps of 101x101

L1 - Convolutional
Layer: 32 maps of
98x98 neurons.
Filter: 4x4

L2 - MaxPoaling
Layer: 32 maps of
49x49 neurons.
Kemel 2x2

L3 - Convolutional

Layer: 32 maps of
46x46. Filtter 4x4

L4 - MaxPooling Layer: 32 maps of 23x23. Kemel: 2x2

L5 - Convolutional Layer: 32 maps of 20x20. Filter: 4x4 ,
L6 - MaxPooling Layer: 32 maps of 10x10 neurons. Kernel: 2x2 [b (SR]

L7 - Convolutional Layer: 32 maps of 8x8 neurons. Filter: 4x4 PUEIPIAT
L8 - MaxPooling Layer: 32 maps of 4x4 neurons. Kernel: 2x2 e

L9 - Fully Connected Layer: 200 neurons Tt R L e
L10 - Output Layer: 3 neurons .

Recurrent Neural Networks for Driver Activity Anticipation
via Sensory-Fusion Architecture (ICRA2016)

Training example : Test example
]

(X1,X3, s X7) 2 Y i (X1, X2, -, X¢)
]

e Problem

y y y Yi Ve

Data

ST o

e Model

Exponentially loss = =Y e T Dlog(y,*)
growing loss

Predictions V-1 Vi ¥Yea1

00O OO0

Softmax

Fusion
Layer

LSTM LSTM

¢ o0 o 0 o

Xt+1 L1

Bin-picking Robot Deep Learning

-—-"-

-\
BNy

Collected datajisjusedite tiain
a deep neuralnetWekite! @Eged;@t

Lesiming

© bin pickingfSuiceessyfaillines fram images

http://www.youtube.com/watch?v=ydh_AdWZflA

http://www.youtube.com/watch?v=l8zKZLqkfII

