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Free-Space and C-Space Obstacle
p How do we know whether a configuration is in 

the free space?

p Computing an explicit representation of the free-
space boundary is very hard in practice? 
■High theoretical complexity
■ Issues in robust implementation
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Free-Space and C-Space Obstacle
p How do we know whether a configuration is in the free 

space?

p Computing an explicit representation of the free-space is 
very hard in practice? 

p Solution: Compute the position of the robot at that 
configuration in the workspace. Explicitly check for 
collisions with any obstacle at that position:
■ If colliding, the configuration is within C-space obstacle
■ Otherwise, it is in the free space

p Performing collision checks is relative simple
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Two geometric primitives in configuration 
space
p CLEAR(q)

Is configuration q collision free 
or not?

p LINK(q, q’) 
Is the straight-line path between 
q and q’ collision-free?
■ Proximity(q, q’) 

Are two configuration q and q’ 
close to each other?
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Difficulty with classic approaches
p Running time increases exponentially with the 

dimension of the configuration space.
■ For a d-dimension grid with 10 grid points on each 

dimension, how many grid cells are there?

p Several variants of the path planning problem 
have been proven to be PSPACE-hard.

10d
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Completeness
p Complete algorithm à Slow

■A complete algorithm finds a path if one exists and 
reports no otherwise.

■Example: Canny’s roadmap method
p Heuristic algorithm à Unreliable

■Example: potential field

p Probabilistic completeness
■ Intuition: If there is a solution path, the algorithm will 

find it with high probability.
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Probabilistic Roadmap (PRM): 
multiple queries

free space

[Kavraki, Svetska, Latombe,Overmars, 96]

local path

milestone



8

Probabilistic Roadmap (PRM): 
single query
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Multiple-Query PRM
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Classic multiple-query PRM 
p Probabilistic Roadmaps for Path Planning in High-

Dimensional Configuration Spaces, L. Kavraki et al., 1996.
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Assumptions
p Static obstacles
p Many queries to be processed in the same 

environment
p Examples

■Navigation in static virtual environments
■Robot manipulator arm in a workcell
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Overview
p Precomputation: roadmap construction
■Uniform sampling
■Resampling (expansion)

p Query processing
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Uniform sampling
Input: geometry of the moving object & obstacles
Output: roadmap G = (V, E)

1: V ← ∅ and E ← ∅.
2: repeat
3:   q ← a configuration sampled uniformly at random from C.
4:    if CLEAR(q)then
5: Add q to V.
6:      Nq ← a set of nodes in V that are close to q.
6:      for each q’∈ Nq, in order of increasing d(q,q’)
7:        if LINK(q’,q)then
8:          Add an edge between q and q’ to E.
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Some terminology
p The graph G is called a probabilistic roadmap. 
p The nodes in G are called milestones.
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Difficulty
p Many small connected components
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Resampling (expansion)
p Failure rate 

p Weight

p Resampling probability 
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Resampling (expansion)
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Query processing
p Connect qinit and qgoal to the roadmap
p Start at qinit and qgoal, perform a random walk, and 

try to connect with one of the milestones nearby
p Try multiple times
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Error
p If a path is returned, the answer is always 

correct.
p If no path is found, the answer may or may not 

be correct. We hope it is correct with high 
probability. 
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Why does it work? Intuition
p A small number of milestones almost “cover” the 

entire configuration space. 
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Smoothing the path
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Smoothing the path
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Summary
p What probability distribution should be used for 

sampling milestones?
p How should milestones be connected? 
p A path generated by a randomized algorithm is 

usually jerky. How can a path be smoothed?
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Single-Query PRM
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Lazy PRM
p Path Planning Using Lazy PRM, R. Bohlin & L. Kavraki, 

2000.
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Precomputation: roadmap construction
p Nodes

■Randomly chosen configurations, which may or may 
not be collision-free

■No call to CLEAR

p Edges
■ an edge between two nodes if the corresponding 

configurations are close according to a suitable metric
■ no call to LINK
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Query processing: overview
1. Find a shortest path in the roadmap
2. Check whether the nodes and edges in the path 

are collision.
3. If yes, then done. Otherwise, remove the nodes 

or edges in violation. Go to (1). 

We either find a collision-free path, or exhaust all paths in 
the roadmap and declare failure.
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Query processing: details
p Find the shortest path in the roadmap

■A* algorithm
■Dijkstra’s algorithm

p Check whether nodes and edges are collisions 
free
■CLEAR(q)
■ LINK(q0, q1)
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Node enhancement
p Select nodes that close the boundary of F
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Sampling a Point 
Uniformly at Random
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Positions
p Unit interval

Pick a random number from [0,1]

p Unit square

p Unit cube

X =

=XX
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Intervals scaled & shifted
p What shall we do?

-2 5

If x is a random number from [0,1], then 7x-2.
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p Sampling
1. Pick x uniform at random from [-1,1]
2. Set 

p Intervals of same widths are sampled with equal 
probabilities

Orientations in 2-D 
(x,y)

x
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Orientations in 2-D

p Sampling
1. Pick θ uniformly at random from [0, 2π]
2. Set x = cosθ and y = sinθ

p Circular arcs of same angles are sampled with equal 
probabilities.

(x,y)

θ
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p Both are uniform in some sense.
p For sampling orientations in 2-D, the second 

method is usually more appropriate.

p The definition of uniform sampling depends on 
the task at hand and not on the mathematics.

What is the difference?

x
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p Unit quaternion
(cosξ/2, nxsin ξ /2, nysin ξ /2, nzsinξ /2)  with nx

2 + ny
2+ nz

2 = 1.

p Sample n and θ separately

p Sample ξ  from [0, 2π] uniformly at random

Orientations in 3-D

n = (nx, ny, nz)

ξ
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Sampling a point on the unit sphere
p Longitude and latitude

x

y

z

ϕ

θ



38

First attempt
p Choose θ and ϕ uniformly at random from [0, 2π] 

and [0, π], respectively. 
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Better solution
p Spherical patches of same 

areas are sampled with 
equal probabilities.

p Suppose U1 and U2 are 
chosen uniformly at 
random from [0,1].

x

y

z

ϕ

θ
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Medial Axis based Planning
p Use medial axis based sampling

■Medial axis: similar to internal Voronoi diagram; set of 
points that are equidistant from the obstacle

■Compute approximate Voronoi boundaries using 
discrete computation

p



41

Medial Axis based Planning

p Sample the workspace by taking points on the 
medial axis
■Medial axis of the workspace (works well for 

translation degrees of freedom)
■How can we handle robots with rotational degrees of 

freedom?


